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Abstract. For a time-dependent harmonic oscillator we show a connection between the 
integrals of  classical equations of motion and the Lewis-Riesenfeld (LR) invariant, and 
enpnss the LR invariant in terms of the integrals of dassical equations of motion. As 
applications we find lhe LR invariant for the Guth-Pi Hamiltonian and the asymptotic 
form of the LR invariant for a general time-dependent harmonic oscillator. 

In recent years there has been a wide application of time-dependent quantum harmonic 
oscillators to quantum optics. Lewis-Riesenfeld [ 11 found an interesting invariant, a 
conserved quantity, for a time-dependent quantum harmonic oscillator in terms of 
whose eigenstates the exact evolution operator is completely determined up to time- 
dependent phase factors. Since then there has been enormous research on it; sometimes 
it is referred to as the Ermakov invariant 12-31, the generalized invariant [4-lo], and 
the Lie algebraic method [ 11-13]. The Lewis-Riesenfeld (LR) invariant plays an impor- 
tant role in the evolution of time-dependent quantum harmonic oscillators. However, 
the exact evolution operators for time-dependent quantum oscillators have been found 
only for limited cases. 

In this article, based on the Lie algebra so(2. 1) for a time-dependent'harmonic 
oscillator, we shall show a connection between the integrals of classical equations of 
motion and the LR invariant. As applications we shall find the LR invariant for the 
Guth-Pi Hamiltonian and the asymptotic form of the LR invariant for a general time- 
dependent harmonic oscillator. 

~~ 

We consider a time-dependent classical harmonic oscillator of the form 

(1) 
H ( t ) = h , ( t ) ~ P 2 + h 2 ( f ) P q + h a ( t ) T q  I 2  . 

The Hamilton equations can be expressed by the vector equation 

- dt d (p'")= d t )  (-MO h(f) - h & ) d ; )  h z ( 0  (2) 

whose integrals of motion are formally given by 

(3) 

1387 



1388 

where T denotes time-ordered integration, and Pa(ra, to)=Qa(ta, f o ) = l ,  Pl(ta, f a ) =  
Ql(fo. to)=O.  With the choice of basis 

1-ZP 
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&=pq x3=fq2 (4) x-' 2 

the harmonic oscillator has a Poisson-Lie structure 

{XI 7 XZ} = -U1 

k( f) = hl(t) fez + h2(f) 

{XI 3 X 3 }  =-XZ {XZ , x3 } = -2X3. (5) 

Let us turn to the quantum harmonic oscillator with the Weyl ordering 

+ 43) + hj(t) $6' (6) 

where the carets denote operators. It is well known that the quantum harmonic oscillator 
has a Lie algebra so(2, 1) with the basis [9]  

(7) L -'@ L=i(fi$+@) 3-2 
L - 1 - 2  

I - 2P 

such that 

[Ll , L2] = -2iLI [LE, LJ= -iL [Lz , L3] = -2iL3. (8) 

There is a one-to-one map between the Poisson-Lie algebra and the Lie algebra under 
the correspondence: { , } -+ -i[ , 1. The quantum evolution operator is formally given 
by 

ta)=TeXP[-i f ~3 hk(&dt]. 

We search for the LR invariant of the form 
3 

h= c gk(t)Lk 
k-  I 

which should obey the equation for an invariant (in units l i= 1) 

(9) 
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By introducing the independent matrices 

0 0 0  

0 0 -1 0 1 0  
(14) 

we can show the connection 2Nk+-i4 (k= 1,2,3) between the LR invariant and the 
quantum evolution operator. 

Now the classical equations of motion for the basis of equation (4) are a linear 
system of the first-order differential equations 

Xl(0 -2h2(t) -h3(t) 0 xdt) 

0 hdt) W t )  x3(0 
(:::)=( u!(t) 0 - 2 k ( t ) ) ( x d f ) ) .  (15) dt 

By introducing an unitary matrix, 

(; 0 2  o) .-'-(% -; 8) c= 0 -1 0 

we may rewrite equation (15) as 

The fact that 

satisfies the same equation for 

and the uniqueness theorem for the solution to a linear system of the first-order differen- 
tial equations shows explicitly a connection between the integrals of classical equations 
of motion and the LR invariant. Therefore we obtain 

POPI P: 
g d t )  =C 2poQ1 PoQo+PiQi 2PiQo (18) 

in terms of the integrals of motion of equation (3) for the classical harmonic oscillator. 

(r::::) ( QIQO Qo' 
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As an example, we apply the connection (18) to the Guth-Pi Hamiltonian [14] 

describing the decomposed modes of a scalar field in the expanding de Sitter universe, 
where b is the size for box normalization, is the expansion rate, k is a Fourier mode, 
and A comes from the ground energy of the scalar field. The classical equation of motion 

has the integrals of motion of equation (3) 

dz 

where J. and N,  are the Bessel functions of the first and second ki,nds, respectively, and 

The LR invariant for the Guth-Pi Hamiltonian can now be read out by equation (IS). 
As a second application, we consider a timedependent harmonic oscillator with a 

variable frequency of the general form 

whose classical equation of motion is 

d'4o+co2(l)q(t)=0. dfz 
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The solutions may not be found explicitly in all general cases. However, we have at 
least the integrals of motion of equation (3) in an asymptotic form, 

where 61 and 6* are determined by the following perturbation equations: 

S,(t)= &,(to)  -exp(-2 [I dt‘o(t’) cot 1; dt”(w(t”) +S, ( f” ) ) )  

x 1‘ dt exp (2 1‘ dt’w (t’) cot [: dt”(w( I ” )  + 6, ( t ” ) ) )  
h 10 

Sz(t) = &(to) -exp dt“(o(f”) + &(t”)) 

Again the LR invariant for the Hamiltonian of equation (23) can be read out by equation 
(181. ~, 

By directly substituting 

we are able to rederive a single nonlinear equation [l], 

Thus, equation (12) for the LR invariant is a linear system of  the first-order differential 
equations corresponding to a single nonlinear equation such as equation (28). 

In summary, the LR invariant of equation (IO) for a time-dependent oscillator of 
equation ( I )  based on the Lie algebra so(2, 1) is given by equation (18) explicitly in 
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terms of the integrals of the classical, equalions of motion of equation (3). The most 
prominent feature of the LR invariant thus obtained is that we no longer need to solve the 
nonlinear differential equation (28) but use instead the integrals of klassical equations of 
motion, and the method used in this paper can be readily applied to other quantum 
systems with Lie algebraic structures such as time-dependent arbitrary spin systems. 

K H Cho and S P Kin? 

Acknowledgments 

We would like to thank Professor K~ S Soh for valuable discussions. This work was 
supported in part by the Korea Science and Engineering Foundation. 

References 

[I] Lewis Jr H R and Riesenfeld W B 1969 J.  Math. Phys. 10 1458 
[2]  Hartley J G and Ray J R 1981 P h y ~  Rev. A24 2873 
[3] Goedert J 1989 Phys. Lett. A 136 391 
[4] Giintcr N J and Leach P G L 1977 J. Moth. Phys. 18 572 
[SI Gordon T J 1986 J. P/ys. A: Mnfh. Gen. 19 183 
[6] Castalios 0, Frank A and Lopez-P&a 1990 J. Phi,?. Ar Moth. Gen. 23 5141 
[7] Polio G and Soliani G 1991 Phy~.  Rev. A 44 2057 
[8] Gao X C, Xu J B and Qian T 2 1991 Phys. Reo. A44 7016 
[9] Hirayama M 1991 Prog. T /mr .  Phys. 86 341 

' 

[IO] Gao X C. Xu J B and Gao J 1992 Prog.;T/ieor. Phys. 87,861,, ,,,. , , ., 
[I I ]  Prants S V 1986 J. Phys. A: Moth. Gen. 19 3457 
(121 Wolf F and Konch H J 1988 P/rys. Rev. ,A37 1934 
[I31 Femandez F M 1989 P/iys. Rcu. A 40 41 
[I41 Guth A Hand  Pi S-Y 1985 Phys: Rev. Q32 1899 

,, 

. 


